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Summary 31 

Background 32 

With confirmed cases of COVID-19 declining in many countries, lockdown measures are 33 

gradually being lifted. However, even if most social distancing measures are continued, 34 

other public health measures will be needed to control the epidemic. Contact tracing either 35 

via conventional methods or via mobile app technology is central to control strategies 36 

during de-escalation of social distancing. It is therefore essential to identify key factors for a 37 

contact tracing strategy (CTS) to be successful.  38 

  39 

Methods 40 

We evaluated the impact of timeliness and completeness in various steps of a CTS using a 41 

stochastic mathematical model with explicit time delays between time of infection, 42 

symptom onset, diagnosis by testing, and isolation. The model also includes tracing of close 43 

contacts (e.g. household members) and casual contacts with different delays and coverages. 44 

We computed effective reproduction numbers of a CTS (Rcts) for a population with social 45 

distancing measures and various scenarios for isolation of index cases and tracing and 46 

quarantine of its contacts.   47 

  48 

Findings 49 

In the best-case scenario (testing and tracing delays of 0 days and tracing coverage of 100%) 50 

the effective reproduction number will be reduced with 50% from 1.2 (with social distancing 51 

only) to 0.6 (Rcts) by contact tracing. A testing delay of 3 days requires tracing delay or 52 
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coverage to be at most 1 day or at least 80% to keep Rcts below 1, with the Rcts reduction 53 

being 15% and 17%, respectively. With a testing delay of 4 days, even the most efficient CTS 54 

cannot reach Rcts values below 1. The effect of minimizing tracing delay (e.g., with app-55 

based technology) declines with declining coverage of app use, but app-based tracing 56 

remains more effective than conventional contact tracing even with 20% coverage. The 57 

proportion of transmissions per index case that can be prevented depending on testing and 58 

tracing delay and isolation of index cases ranges from above 80% in the best-case scenario 59 

(testing and tracing delays of 0 days) to 40% and 17% with testing delays of 3 and 5 days, 60 

respectively.  61 

  62 

Interpretation 63 

Minimizing testing delay is of key importance for the effectiveness of CTS. Optimizing testing 64 

and tracing coverage and minimizing tracing delays, for instance with app-based technology 65 

further enhances effectiveness of CTS, with a potential to prevent up to 80% of all 66 

transmissions. The process of conventional contact tracing should be reviewed and 67 

streamlined, while mobile app technology may offer a tool for gaining speed in the process. 68 

 69 

 70 
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Research in context 76 

Evidence before this study 77 

As of 8 May 2020, the novel coronavirus (SARS-CoV-2) has spread globally and has caused 78 

more than 263,000 confirmed deaths of COVID-19 worldwide. In the absence of effective 79 

medicines and vaccines, many countries have implemented strict measures of social 80 

distancing, thereby reducing transmission and bringing the epidemic under control. For 81 

lifting these measures, adequate tools are needed to deal with possible newly arising 82 

transmission clusters. Strategies including isolation of confirmed and suspected cases, and 83 

identification and quarantining of their contacts are considered a key part of the response 84 

during de-escalation of social distancing.  As a substantial portion of transmission may occur 85 

before the onset of symptoms and before cases can be isolated, it is unclear how successful 86 

contact tracing strategies (CTS) can be in reducing onward transmission.   87 

 88 

Added value of this study 89 

We performed a systematic analysis of the various steps required in the process of testing 90 

and diagnosing an index case as well as tracing and isolation possible secondary cases of the 91 

index case. We then used a stochastic transmission model which makes a distinction 92 

between close contacts (e.g. household members) and casual contacts to assess which steps 93 

and (possible) delays are crucial in determining the effectiveness of CTS. We 94 

evaluated how delays and the level of contact tracing coverage influence the effective 95 

reproduction number, and how fast CTS needs to be to keep the reproduction number 96 

below 1.  We also analyzed what proportion of onward transmission can be prevented for 97 

short delays and high contact tracing coverage.  Assuming that around 40% of transmission 98 



 5 

occurs before symptom onset, we found that keeping the time between symptom onset and 99 

isolation of an index case short (<3 days) is imperative for a successful CTS. This implies that 100 

the process leading from symptom onset to receiving a positive test should be minimized by 101 

providing sufficient and easily accessible testing facilities. In addition, reducing contact-102 

tracing delays also helps to keep the reproduction number below 1. 103 

 104 

Implications of all the available evidence 105 

Our analyses highlight that CTS will only contribute to containment of COVID-19 if it can be 106 

organised in a way that time delays in the process from symptom onset to isolation of the 107 

index case and his/her contacts are very short. The process of conventional contact tracing 108 

should be reviewed and streamlined, while mobile app technology may offer a tool for 109 

gaining speed in the process. 110 

  111 
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Introduction 112 

As the first wave of the SARS-CoV-2 has reached its peak of cases in many countries, 113 

societies are preparing so-called exit-strategies from the COVID-19 lockdown, while still 114 

successfully controlling transmission. Contact tracing, in combination with testing and 115 

quarantine or isolation of the contacts, is considered a key component in a phase when 116 

lockdown measures are gradually lifted1-8 This requires upscaling of conventional contact 117 

tracing capacity. The potential of mobile apps to support contact tracing is widely discussed 118 

and such technology has been used in several Asian countries that have successfully reduced 119 

case numbers9-14. Yet, many uncertainties remain on the optimal process of contact tracing 120 

with conventional methods and/or mobile applications, on the timing of testing for current or 121 

past infection, and on the required coverage of contact tracing needed. As a result, predicting 122 

the effects of contact tracing, and predicting whether and at which level of virus circulation 123 

contact tracing can sufficiently control remaining transmission is difficult.   124 

 125 

Modelling studies have demonstrated how mobile applications can increase effectiveness of 126 

contact tracing, compared to conventional approaches for contact tracing, but effectiveness 127 

depends on what proportion of the population will use the app consistently and for a 128 

sufficiently long period of time9. 129 

 130 

In previous work, we have investigated the impact of timeliness and completeness of case 131 

reporting for the effectiveness of surveillance and interventions15-17, and we quantified the 132 

timeliness of contact tracing of infected passengers during an airline flight for the 2009 133 

pandemic influenza18. In all of these studies, the timing of various steps in the monitoring and 134 

intervention chain emerged as one of the key factors for effectiveness of a public health 135 
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response. Usually, there are identifiable delays in the response chain that may be critical to 136 

the overall effectiveness of a strategy.  137 

 138 

Here we analyze in detail the process chain of identifying index cases by symptom-reporting 139 

followed by testing, and subsequent contact tracing, with the aim to inform policy makers on 140 

the relative importance of key steps in the process. We use a mathematical model that reflects 141 

the various steps and delays in the test and contact tracing process to quantify the impact of 142 

delays on the effective reproduction number and the fraction of onward transmission 143 

prevented per diagnosed index case5,19.  144 

 145 

 146 

Time delays in contact tracing 147 

Our starting point is an assumed effective reproduction number (Re) for COVID-19 of around 148 

1, describing a situation with “social distancing but measures lifted to some extent”. We then 149 

quantify the relative contribution of the individual components of a contact trace strategy 150 

(CTS) required to bring and maintain the effective reproduction number with CTS (RCTS) to a 151 

value below 1. For simplicity we do not include transmission in healthcare settings. 152 

We break down the process of contact tracing in two different steps (Table 1 and Figure 1).  153 

• An index case acquires infection (at time T0), then after a short latent period becomes 154 

infectious (at time T1), and finally symptomatic (at time T2), which is here defined as 155 

“being eligible for testing”.  Subsequently a proportion of all symptomatic subjects gets 156 

tested and diagnosed (at time T3). The time between T2 and T3  is called the “testing 157 

delay” (D1 = T3 - T2), and may vary between 0 and 5 days, and in this period individuals 158 
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might self-quarantine. We refer to the proportion of all symptomatically infected 159 

subjects that is tested as testing coverage and vary it from 20% to 100%. After being 160 

diagnosed, we assume index cases are quarantined with no further transmission.   161 

• The second step is tracing contacts of the index, which occurs at time T4. A fraction of 162 

those contacts will be quarantined, with effectiveness ranging from 0%-100%. For 163 

simplicity we assume that contacts in quarantine do not spread. The time between T3 164 

and T4 is the “tracing delay” (D2 = T4 – T3), which may range from 0 (for instance with app 165 

technology) to 4 days (with conventional approaches). In this step, tracing coverage is 166 

defined as the proportion of contacts detected, which either depends on the capacity of 167 

conventional approaches (ranging from 40% to 80%) or on the fraction of the population 168 

using suitable app technology for screening (ranging from 40% to 80%).  169 

  170 
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Figure 1: Schematic of the contact tracing process and its time delays. 171 
 172 
 173 

 174 
 175 
 176 
Table 1: Time delays in the test and contact tracing process (see also Figure 1). 177 

Time  Event Comments Model implementation 

T0 the time of 

infection of the 

index case  

 

Not observed Start of the latent period, which lasts 1-3 days. 

T1 Time the index 

case becomes 

infectious 

Proportion of pre-

symptomatic 

transmission may range 

from 0% to 40% of all 

transmissions 

After 1-3 days after infection, the infectious 

stage starts, which lasts 10 days with variable 

infectiousness. About 40% of transmission 

takes place in the first 2 days of 

infectiousness25. 

T2 Time that the 

index (case) 

becomes 

T0  until T2 reflects the 

time window in which 

prevention is not 

possible with CTS 

The incubation period in the model is taken in 

agreement with published literature21.   

D1 =  T3 – T2 delay to diagnosis
D2  = T4 – T3 delay in tracing contacts

Coverage of contact tracing: 
percentage of contacts found 
and isolated

T0   time of infection of index case
T1   onset of infectiousness
T2   symptom onset
T3   time of positive diagnosis
T4   time of tracing and quarantining contacts

X     prevented by contact tracing

time
X     prevented by isolation

Index case

Positive test result Contacts traced

X

X

X X

T0 T1 T2 T3 T4



 10 

symptomatic, and 

eligible for testing 

 

T3 Time that index 

(case) is tested 

positive 

T2 until T3 is the testing 

delay, which may range 

from 0-5 days  

The proportion being 

tested varies from 0-

100% 

During this period we 

expect subjects to self-

quarantine, with 

effectiveness ranging 

from 0%-100% 

After a testing delay D1 after symptom onset, 

an individual receives a positive test result 

and gets isolated. If an individual self isolates 

immediately, D1=0. After isolation, no 

transmission takes place. 

T4 Time that contacts 

of index case are 

traced and 

quarantined. 

T3 until T4 is the tracing 

delay, which may range 

from 0 (for instance with 

app technology) to 4 

days (with current GGD 

approach). 

Here we can also vary 

the proportion with short 

post-test-delay (those 

with apps) and not.  

After a tracing delay D2, contacts of the index 

case are traced and isolated. D2 and the 

tracing coverage (proportion of contacts found 

and isolated) may differ between close and 

casual contacts. If household contact self-

isolate immediately with the index case, it 

means that D2=0 and coverage 100% for close 

contacts.  

For simplicity we assume that contacts in 

quarantine do not spread. 

 

 178 
 179 
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The best-case scenario is that all eligible for testing are immediately tested (coverage 100%) 180 

with a very fast test result (test-delay 1 day), followed by immediate tracing (trace delay 0 181 

days) of all contacts (coverage 100%), that immediately adhere to quarantine measures. More 182 

realistic scenarios include testing and tracing delays, with suboptimal testing and tracing 183 

coverages and suboptimal adherence to quarantining and testing.  184 

 185 

Impact on effectiveness on population level 186 

To analyse the impact of these time delays on the effectiveness of contact tracing we use a 187 

model first described in Kretzschmar et al19, which was recently adapted for SARS-CoV-25. 188 

The stochastic model describes an epidemic in its early phase as a branching process. Starting 189 

from a small set of initially infected individuals, the model calculates the numbers of latently 190 

infected persons, infectious persons, and persons that are diagnosed and isolated in time steps 191 

of one day. Latent infection, infectivity during the infectious period, and daily contact rates 192 

are quantified using distributions taken from published data.20-24 We distinguish between 193 

close contacts (e.g. household contacts, but also other high-risk contacts) and casual contacts, 194 

which differ in the risk of acquiring infection from the index case. Also, the time required for 195 

tracing and quarantining contacts and the coverage of tracing may differ between these types 196 

of contacts and between different CTS (i.e., conventional contact tracing versus mobile app 197 

supported contact tracing). Intervention effectiveness is determined by the daily probability 198 

of an index case being diagnosed by testing during the infectious period, and depends on 199 

various delays in the process of tracing household and non-household contacts, respectively, 200 

and on the proportions of contacts that can be traced and isolated (see Figure 1). We assume 201 

that isolation is perfect, i.e. that isolated persons do not transmit any longer. The model is 202 

described by a set of difference equations, and allows for explicit computation of the basic 203 

reproduction number R0, the effective reproduction number under social-distancing 204 
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interventions Re and the effective reproduction number with CTS (Rcts). The model was 205 

coded in Mathematica 12.1.   206 

 207 

Parameter settings 208 

We assumed that without social distancing individuals have on average 4 close contacts per 209 

day and around 9 casual contacts per day, with certain stochastic variability. The distributions 210 

were fitted to data from the Polymod study23. Transmission probability per contact for close 211 

contacts was taken to be 4 times higher than for casual contacts. Symptomatic and 212 

asymptomatic cases were assumed to be equally infectious. Overall, the transmission 213 

probability was calibrated to a basic reproduction number of R0 = 2.5. For the social 214 

distancing, we assumed that close contacts were reduced by 40% and casual contacts by 70%. 215 

The resulting effective reproduction number was Re = 1.2.  Without further interventions, the 216 

doubling time of the epidemic would be around 19 days.  217 

 218 

Scenarios modelled 219 

We analyzed the impact of various testing and tracing delays and tracing coverage on the 220 

effective reproduction number Rcts while keeping the testing coverage at 100%. For 221 

comparison, we also considered the strategy where symptomatic individuals get tested and 222 

isolated, without subsequent tracing (Riso). We varied the testing delay D1 between 0 and 7 223 

days, the tracing delay D2 between 0 and 3 days, and tracing coverages between 0% and 224 

100%. Tracing delays and coverages were allowed to differ between close contacts and 225 

casual contacts.  226 

 227 

We then compared the effectiveness of conventional CTS with a scenario that reflects mobile 228 

app technology for alerting subjects to be tested and for tracing contacts. Differences between 229 
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these  strategies were taken as follows. The testing delay (D1) is reduced with app 230 

technology. With conventional CTS symptomatic individuals need to decide to seek health 231 

care to get tested, and we assume that with app technology symptomatic subjects get alerted 232 

and can be tested without health care interference, for instance in specific test facilities for 233 

app users. For conventional CTS we assume suboptimal coverage in identifying contacts 234 

from the week before diagnosis by testing due to recall bias, especially for casual contacts. 235 

For CTS with mobile app technology we assume 100% tracing coverage of the proportion of 236 

subjects using app technology. For simplicity we assume 100% compliance with 237 

quarantining. We assume that tracing goes back for 7 days before the positive test result. The 238 

exact parameter values for this comparison are shown in Table 2.  239 

 240 

Next, we quantified the impact of coverage of testing and app use on the effectiveness of 241 

CTS. We varied the percentage of app users in the population between 20% and 80%.  We 242 

first considered the situation that testing is provided for 100% of persons with symptoms 243 

independent of app use, and app use only influences the fraction of contacts that are traced. 244 

Alternatively, we considered the situation that only app users with symptoms are tested (i.e. 245 

testing coverage varies between 20% and 80%) and coverage of tracing also depends on 246 

fraction of app use, i.e. varies as the testing coverage. 247 

 248 

Finally, we quantified the fraction of transmissions of an index person that can be prevented, 249 

and the contribution to the fraction prevented from isolation and from tracing contacts with 250 

decreasing delays. The number of onward transmissions of an index case is by definition 251 

described by the effective reproduction number of the realized scenario. Therefore, the 252 

difference of reproduction numbers between two intervention scenarios under the condition 253 

that an index case is diagnosed, will describe the fraction of onward transmissions prevented. 254 
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For contact persons, this is the fraction of the total infectivity that lies after the time of 255 

isolation, i.e. the part of infectiousness that is prevented by contact tracing. In other words, a 256 

contact person who is detected and isolated before the start of his infectious period is a fully 257 

prevented transmission, while a contact person who is only traced and identified after 70% of 258 

his infectivity has passed, is counted as 0.3 of a prevented onward transmission.  259 

 260 

Table 2: Comparison Conventional CT and Mobile app CT 261 

 262 

 Conventional CT Mobile app CT 

Testing coverage 100% 100% 

Time to (self)-isolation (D1) 4 days 0 day 

Time to trace close contacts (D2) 3 days 0 day 

Time to trace other contacts 3 days 0 day 

Tracing coverage close contacts  80% 100% 

Tracing coverage casual contacts 50% 100% 

Time traced back 7 days 7 days 

 263 

Results 264 

In the best-case scenario, if all infectious persons that develop symptoms are tested and 265 

isolated within 1 day after symptom onset the effective reproduction number Re will decline 266 

from 1.2 to Riso = 0.97, without contact tracing (Figure 2). Contact tracing will further 267 

decrease the reproduction number to Rcts=0.6 in the best case. In the optimal scenario – a 268 

testing delay of 0 days and a tracing delay of 0 days and a tracing coverage of 100%, the 269 

additional reduction of Rcts is 50%. Yet, with a diagnosis delay of 3 days, tracing delay or 270 

tracing coverage should be at most 1 day or at least 80% to keep Rcts below 1. In these 271 
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scenarios the reduction of Rcts compared to the best-case scenario is 15% and 17%. With a 272 

testing delay of 4 days, even the most efficient contact tracing cannot reach Rcts values below 273 

1.   274 

 275 
 276 
 277 
Figure 2: Impact of contact tracing on the effective reproduction number depending on various 278 
delays and tracing coverages. In these analyses, 100% of those who develop symptoms get tested. 279 
For comparison the reproduction number Riso with only isolation of index cases without contact 280 
tracing is plotted (green). (A) Influence of varying tracing delay D1 on the x-axis. The curves plotted 281 
in blue show varying tracing delays D2; (B) Here the tracing coverage is varied in the curves plotted 282 
in blue, while there is assumed to be no delay in tracing the contacts.   283 
 284 

 285 
 286 
 287 
 288 

We assumed that conventional CTS has longer tracing delay and lower tracing coverage than 289 

CTS based on app technology which results in marked differences in Rcts for the whole range 290 

of testing delay (Figure 3). With conventional CTS, Rcts would remain above 1, if the testing 291 

delay exceeds 2 days, whereas contact tracing based on app technology could still keep Rcts 292 

below 1, as long as testing and tracing coverage would be at least 80%. If the testing delay 293 

reaches 5 days or more, app technology adds little effectiveness to conventional CTS or just 294 

isolating symptomatic cases.   295 

 296 

 297 
 298 
 299 
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 300 
 301 
 302 
Figure 3: Comparison of a conventional and mobile app CTS. For parameter values, see table 2. 303 
We assumed that ascertainment is 100% for the conventional CTS and 100% and 80% for the mobile 304 
app CTS.   305 
 306 
 307 

 308 
 309 
 310 
 311 
 312 
 313 

The reductions of Re (based on social distancing) achieved by isolation only, conventional 314 

CTS, and mobile app-based CTS is shown in figure 4. For isolation only and for conventional 315 

CTS we assumed a delay of 4 days between symptom onset and isolation of the index case. 316 

The relative reductions are independent of the level of Re, as there is a linear relationship 317 

between the various reproduction numbers. Conventional CTS, even if applied for all 318 

infected subjects with symptoms is 45% less effective than mobile app-based CTS, due to 319 

longer tracing delays and lower tracing coverage.   320 

 321 

The effectiveness of app-based technology declines with lower fractions of persons using it 322 

(Figure 5). Yet, it remains more effective than conventional contact tracing even with 20% 323 

isolation

reproduction number Rereproduction number Re

CTS
Conventional CT

Mobile App CT 100%
Mobile App CT 80%

0 1 2 3 4 5 6 7

0.6

0.8
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1.2
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R
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coverage, due to its inherent speed. In Figure 5a we assume that all symptomatic persons get 324 

tested, and then vary coverage of app use. In Figure 5b, we assume that only app users who 325 

develop symptoms get diagnosed, and that only app users get traced and isolated. Even with 326 

low coverage there is a reduction of Re, due to fast tracing of a small part of te population. 327 

Depending on Re, such an approach might be sufficient to reduce Rcts to levels below 1.   328 

 329 

In Figure 6, we quantified proportions of transmissions per index case that can be prevented 330 

depending on testing delay, as well as the contributions of isolation of index cases and tracing 331 

of contacts. In the best-case scenario (testing and tracing delay being 0 days) more than 80% 332 

of transmissions can be prevented if coverage of infected persons being tested is 100%.   333 

 334 
 335 
 336 
Figure 4: The reduction of the effective reproduction number for various CTS. The reproduction 337 
number with CTS, Rcts, is shown as a percentage of the reproduction number where only social 338 
distancing is implemented (Re). For the isolation scenario and conventional tracing scenario we 339 
assumed that there is a delay of 4 days between symptom onset and isolation of the index case. 340 
 341 
 342 

 343 
 344 
 345 
 346 
Figure 5: The impact of mobile app use on Rcts for varying levels of app use. In (A), we assume 347 
that there is also testing of those who do not use the mobile app, so app use only is used for tracing 348 
contacts. In (B), only app users, who develop symptoms, are tested.  349 
 350 
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 351 
(A) 352 
 353 
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 358 
(B) 359 
 360 
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Figure 6: The fraction of onward transmissions prevented by isolation of the index case and 371 
his/her infected contacts. The fraction prevented by contact tracing increases with decreasing tracing 372 
delay.  373 
 374 
 375 
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Discussion and conclusions 378 

Using a mathematical model that describes the different steps of the CTS for COVID-19 we 379 

have quantified the relevance of delays and coverage proportions for controlling transmission 380 

of SARS-CoV-2. Based on these analyses we conclude that reducing the testing delay, i.e. 381 

shortening the time between symptom onset and test positivity, is the most crucial step. 382 

Reducing the tracing delay, i.e. shortening the time of contact tracing, may further enhance 383 

the effectiveness of CTS. Yet this additional effect rapidly declines with increasing testing 384 

delay. Naturally, the effectiveness of CTS increases when proportions of index subjects 385 

detected and contacts traced increase as well. CTS has huge potential to control virus 386 

transmission, and thus to alleviate other control measures, but only if all delays are 387 

maximally reduced.   388 

 389 

There are several obvious factors that can reduce the effectiveness of CTS, such as a large 390 

proportion of infectious subjects that remain asymptomatic or are otherwise not ascertained 391 

and a large proportion of contacts that cannot be traced. The latter implies that the potential 392 

benefits of using app-based technology for contact tracing requires participation of a 393 

substantial proportion of the population. Also, app use needs to continue over a long time 394 

period, so required continued adherence of app users. Low proportions of participation do not 395 

render CTS useless, however, because it could help to locally extinguish clusters before they 396 

grow larger. Also, for this purpose, the timeliness and completeness of CTS in local 397 

populations should be high to make it successful.  398 

 399 

The strength of the approach is that it explicitly takes many details of the contact tracing 400 

process into account, such that the key factors can be identified. A limitation of our approach 401 

is that it does not take population age-structure into account, which may influence the 402 
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proportion of asymptomatic cases and the mobile app use coverage. Also, the willingness of 403 

an index case or contact person to self-isolate may be different in different age groups. We 404 

have also assumed homogeneous mixing of the population, and homogeneous distributed use 405 

of app technology for the different coverage levels. Yet, clustering of non-users may have 406 

consequences for overall effectiveness of CTS, similar to clustering of non-vaccinated 407 

subjects. This is an important aspect to be addressed in subsequent work. The model also 408 

ignores that some contacts of the index case may have symptoms before they are traced by 409 

CTS. As these contacts may already self-isolate, this lowers the benefits of contact tracing.   410 

 411 

Our finding of the crucial importance of the first step of CTS, establishing a diagnosis in 412 

subjects with symptoms, has important consequences. It requires an infrastructure for testing, 413 

that allows subjects with symptoms to be tested, preferably, within one day of symptom 414 

onset. Studies have demonstrated that viral shedding in the respiratory tract is highest at the 415 

start of symptoms25, so early testing will also increase the sensitivity of this approach. To 416 

further enhance effectiveness, as many infectious subjects need to be tested, which requires a 417 

low threshold for testing. As the clinical symptoms of COVID-19 are mostly mild and 418 

heterogeneous, many subjects should be eligible for testing, resulting in a large proportion of 419 

subjects with negative test results. Future work should determine the optimal balance 420 

between the proportion of test-negatives and the effectiveness of CTS. In our country, testing 421 

of ambulatory subjects is coordinated by the public health services and general practitioners. 422 

That infrastructure may introduce a considerable delay in testing. To optimize the 423 

effectiveness of CTS a different infrastructure with direct access of symptomatic subjects to 424 

testing facilities should be considered. Finally, laboratories should be prepared to deliver 425 

high-throughput rapid testing.   426 

 427 
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Our findings also provide strong support to optimize contact tracing. In our country this is 428 

now based on establishing a contact between public health officers and index patients, 429 

followed by an interview after which contacts are traced. This procedure is labor intensive, 430 

time consuming, prone to recall bias and usually takes several days. Optimizing this process 431 

with app technology, or any other method achieving the same goal of minimizing tracing 432 

delay, will be needed to establish optimal control of transmission. An important advantage of 433 

app-based technology is the possibility of performing multiple step tracing, as not only the 434 

first-line contacts can be traced, but also their (second-line) contacts and so on. Naturally, the 435 

number of contacts than rapidly increases, which increases the number of both correctly and 436 

unnecessarily quarantined subjects. Further work will focus on finding an optimal balance for 437 

this aspect. In fact, our findings suggest that optimized CTS, with short delays and high 438 

coverage for testing and tracing could reduce the reproduction number by 50%, which would 439 

allow alleviation of most of the currently implemented control measures.     440 

 441 
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